物理学家称之为光子的东西,其他人可能称之为光。作为光的量子,光子是电磁能量存在的最小单元。如果你是在屏幕或纸面上阅读这篇文章,光子流会把文字的图像信息带到你的眼睛里。在科学上,光子的用途不仅仅在于照明。
波兰克拉科夫核物理研究所副研究员理查德·鲁伊斯(Richard Ruiz)是一位用大型强子对撞机寻找新物理的理论学家,他说道,“光子无处不在。在粒子物理学中处处有它的身影,以至于你几乎忽略了它们的存在。”光子助力了几个世纪的科学发现,直到今天它仍然是一个重要的工具。一块棱镜可以将一束白光折射成五彩缤纷的颜色,就像一道彩虹。牛顿注意到,当光线通过第二个棱镜再次折射时,它不再进一步分裂,彩虹的颜色保持不变。牛顿说,这可以通过假设白光是由许多不同大小的微粒组成来解释。红光是由最大的微粒组成的,而紫光是由最小的微粒组成的。牛顿思考,它们大小的差异导致了微粒以不同的速度通过玻璃,这使它们分散开来,产生不能被第二个棱镜进一步分解的彩虹。
然而,牛顿的微粒模型有一个明显的缺陷。事实上,当光穿过一个小洞时,它就像水中的波纹一样扩散开来。牛顿的微粒模型不能解释这种现象,而惠更斯的光波模型却可以。尽管如此,科学家们通常倾向于否定惠更斯的理论,而相信牛顿,毕竟后者写了《原理》这本书——科学史上最重要的书之一。
到了1801年,惠更斯的模型终于得到了一些支持,这一年托马斯·杨(Thomas Young)完成了双缝干涉实验。实验中,托马斯·杨将一束光通过两个并排的小孔,光通过小孔后会形成一种特殊的图案。在有规律的间隔中,从两个孔中产生的交叠波纹要么相互结合产生更亮的光,要么相互抵消掉,就像海浪一样。
大约50年后,另一个实验使惠更斯的光波模型处于上风。1850年,傅科(Léon Foucalt)比较了光在空气的速度和光在水中的速度,发现与牛顿的断言相反,光在密度更大的介质中并没有移动得更快。相反,就像波浪一样,它的速度变慢了。所谓的光源,是可以产生强烈的X射线、紫外光和红外光的仪器,这一工具帮助科学家分解最快的化学过程,并从分子的程度上测试材料。斯坦福大学材料科学与工程副教授Jennifer Dionne说:“整个电磁光谱,光子为我们提供了关于世界如此之多的信息。”Dionne的研究方向是纳米光子学,这是物理学中的一个分支领域,物理学家通过控制光来研究其与分子和纳米尺度结构的相互作用。她的实验室还利用光子来提高催化剂的效果,催化剂是用来启动高效化学反应的物质。“光-光子,在化学中是一种人们通常不会想到的试剂。” Dionne说,“人们经常考虑添加新的化学物质来实现某种反应,或者控制溶液的温度或pH值。光可以带来一个全新的维度,它是一个全新的工具包。”
一些物理学家甚至在寻找新的光子类型。理论上的“暗光子(dark photons)”可以作为一种新的规范玻色子,它们传递暗物质粒子之间的相互作用。