圆周率,是指圆的周长与直径的比值,即圆周率 = 圆周长 / 直径,一般用希腊字母 π 表示,是一个在数学及物理学中普遍存在的数学常数。 π 也等于圆形之面积与半径平方之比,即圆周率 = 圆面积 / 半径 ↑ 2 ,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里, π 可以严格地定义为满足 sin ( x )= 0 的最小正实数 x 。
圆周率用希腊字母 π 表示,是一个常数( ≈ 3 . 141592654 ),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用 3 . 14 代表圆周率去进行近似计算。而用九位小数 3 . 141592654 便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1665 年,英国数学家约翰·沃利斯( John Wallis )出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。 2015 年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
2019 年 3 月 14 日, Google 宣布圆周率现已到小数点后 31 . 4 万亿位。
2021 年 8 月 17 日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时 108 天,将著名数学常数圆周率 π 计算到小数点后 62 . 8 万亿位,创下该常数迄今最精确值记录。
I 、历史发展
• 实验时期
一块古巴比伦石匾(约产于公元前 1900 年 ~ 公元前 1600 年)清楚地记载了圆周率 = 25 / 8 = 3 . 125 。同一时期的古埃及文物,莱因德数学纸草书( Rhind Mathematical Papyrus )也表明圆周率等于分数 16 / 9 的平方(即 256 / 81 ),约等于 3 . 1605 。埃及人似乎在更早的时候就知道圆周率了。英国作家 John Taylor ( 1781 ~ 1864 )在其名著《金字塔》(“ The Great Pyramid : Why was it built , and who built it ? ”)中指出,造于公元前 2500 年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比(即 2π )。公元前 800 至 600 年成文的古印度宗教巨著《百道梵书》( Satapatha Brahmana )显示了圆周率等于分数 339 / 108,约等于 3 . 139 。
• 几何法时期
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前 287 年~公元前 212 年)开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为 3 ,再用外接正六边形并借助勾股定理求出圆周率的上界小于 4 。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正 12 边形和外接正 12 边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正 96 边形和外接正 96 边形为止。最后,他求出圆周率的下界和上界分别为 223 / 71 和 22 / 7 ,并取它们的平均值 3 . 141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
中国古算书《周髀算经》(约公元前 2 世纪)的中有“径一而周三”的记载,意即取 π = 3 。汉朝时,张衡得出 π ↑ 2 / 16 ≈ 5 / 8 ,即 π ≈ √ 10 (约为 3 . 162 )。这个值不太准确,但它简单易理解。
公元 263 年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正 192 边形。他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”这包含了求极限的思想。刘徽给出 π = 3 . 141024 的圆周率近似值,刘徽在得圆周率 = 3 . 14 之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现 3 . 14 这个数值还是偏小。于是继续割圆到 1536 边形,求出 3072 边形的面积,得到令自己满意的圆周率 3927 / 1250 = 3 . 1416 。
公元 480 年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后 7 位的结果,给出不足近似值 3 . 1415926 和过剩近似值 3 . 1415927 ,还得到两个近似分数值,密率 355 / 113 和约率 22 / 7 。密率是个很好的分数近似值,要取到 52163 / 16604 才能得出比 355 / 113 略准确的近似。(参见丢番图逼近)
在之后的 800 年里祖冲之计算出的 π 值都是最准确的。其中的密率在西方直到1573年才由德国人奥托( Valentinus Otho )得到, 1625 年发表于荷兰工程师安托尼斯( Metius )的著作中,欧洲称之为 Metius' number 。
约在公元 530 年,印度数学大师阿耶波多算出圆周率约为 √ 9.8684 。婆罗摩笈多采用另一套方法,推论出圆周率等于 √ 10 。
• 分析法时期
这一时期人们开始利用无穷级数或无穷连乘积求 π ,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种 π 值表达式纷纷出现,使得 π 值计算精度迅速增加。
第一个快速算法由英国数学家梅钦( John Machin )提出, 1706 年梅钦计算 π 值突破 100 位小数大关,他利用了公式 π / 4 = 4 • arctan ( 1 / 5 )- arctan ( 1 / 239 )
其中 arctan( x )可由泰勒级数算出。类似方法称为“梅钦类公式”。
斯洛文尼亚数学家 Jurij Vega 于 1789 年得出 π 的小数点后首 140 位,其中只有 137 位是正确的。这个世界纪录维持了 50 年。他利用了梅钦于 1706 年提出的数式。
到 1948 年英国的弗格森( D . F . Ferguson )和美国的伦奇共同发表了 π 的 808 位小数值,成为人工计算圆周率值的最高纪录。
• 计算机时代
电子计算机的出现使 π 值计算有了突飞猛进的发展。 1949 年,美国制造的世上首部电脑—— ENIAC ( ElectronicNumerical Integrator And Computer )在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出 π 的 2037 个小数位。这部电脑只用了 70 小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后, IBM NORC (海军兵器研究计算机)只用了 13 分钟,就算出 π 的 3089 个小数位。科技不断进步,电脑的运算速度也越来越快,在 20 世纪 60 年代至 70 年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争, π 的值也越来越精确。在 1973 年, Jean Guilloud 和 Martin Bouyer 以电脑 CDC 7600 发现了 π 的第一百万个小数位。
在 1976 年,新的突破出现了。萨拉明( Eugene Salamin )发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。这算法被称为布伦特-萨拉明(或萨拉明-布伦特)演算法,亦称高斯-勒让德演算法。
1989年美国哥伦比亚大学研究人员用克雷-2型( Cray – 2 )和 IBM-3090 / VF 型巨型电子计算机计算出π值小数点后 4 . 8 亿位数,后又继续算到小数点后 10 . 1 亿位数。2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后 27000 亿位。 2010 年 8 月 30 日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后 5 万亿位。
2011 年 10 月 16 日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后 10 万亿位,刷新了 2010 年 8 月由他自己创下的 5 万亿位吉尼斯世界纪录。 56 岁的近藤茂使用的是自己组装的计算机,从 10 月起开始计算,花费约一年时间刷新了纪录。
2022 年 3 月 14 日是国际圆周率日。经吉尼斯世界纪录认证,目前 π 的最准确值,超过小数点后 62 , 831 , 853 , 071 , 796 位。
2024 年 3 月 15 日,据美国趣味科学网站报道,在国际圆周率日,总部位于美国加州的计算机存储公司 Solidigm 发布声明称,该公司已将圆周率 π 计算到小数点后约 105 万亿位,打破此前 100 万亿位的世界纪录。
• 计算历史
前20世纪 | 未知 | 古巴比伦王国 | 1 | π=3.125 |
前20世纪 | 未知 | 古印度 | 1 | π=3.160493… |
前12世纪 | 未知 | 中国 | —— | π=3 |
前6世纪中 | 圣经列王记上7章23节 | —— | π=3 | |
前3世纪 | 阿基米德 | 古希腊 | 3 | π=3.1418 |
公元前20年 | 维特鲁威 | 古罗马 | 1 | π=3.125 |
公元前50年~公元前23年 | 刘歆 | 中国 | 1 | π=3.1547 |
130年 | 张衡 | 中国 | 1 | π=3.162277… |
150年 | 未知 | 托勒密 | 3 | π=3.141666… |
250年 | 王蕃 | 中国 | 1 | π=3.155555… |
263年 | 刘徽 | 中国 | 5 | π=3.14159 |
480年 | 祖冲之 | 中国 | 7 | π=3.1415926 |
499年 | 阿耶波多 | 印度 | 3 | π=3.1416 |
598年 | 婆罗摩笈多 | 印度 | 1 | π=3.162277… |
800年 | 花拉子米 | 乌兹别克 | 3 | π=3.1416 |
12世纪 | 婆什迦罗第二 | 印度 | 4 | π=3.14156 |
1220年 | 斐波那契 | 意大利 | 3 | π=3.141818 |
1400年 | Madhava | 10 | π=3.14159265359 | |
1424年 | Jamshid Masud Al Kashi | 16 | ||
1573年 | Valentinus Otho | 6 | ||
1593年 | 弗朗索瓦·韦达 | 法国 | 9 | |
1593年 | Adriaan van Roomen | 15 | ||
1596年 | 鲁道夫·范·科伊伦 | 20 | ||
1615年 | 32 | |||
1621年 | 威理博·司乃耳,范·科伊伦的学生 | 35 | ||
1665年 | 牛顿 | 16 | ||
1699年 | Abraham Sharp | 71 | ||
1700年 | 关孝和 | 10 | ||
1706年 | John Machin | 100 | ||
1706年 | William Jones | 引入希腊字母π | ||
1719年 | De Lagny | 112 | 得出127位,前112位正确 | |
1723年 | 建部贤弘 | 41 | ||
1730年 | Kamata | 25 | ||
1734年 | 莱昂哈德·欧拉 | 引入希腊字母π并肯定其普及性 | ||
1739年 | 松永良弼 | 50 | ||
1761年 | 约翰·海因里希·兰伯特 | 证明π是无理数 | ||
1775年 | 欧拉 | 指出π可能是超越数 | ||
1794年 | Jurij Vega | 136 | 得出140位小数,前136位正确 | |
1794年 | 阿德里安-马里·勒让德 | —— | ||
1841年 | Rutherford | 152 | 得出208位小数,前152位正确 | |
1844年 | Zacharias Dase及Strassnitzky | 200 | ||
1847年 | Thomas Clausen | 248 | ||
1853年 | Lehmann | 261 | ||
1853年 | William Rutherford | 440 | ||
1855年 | Richter | 500 | ||
1874年 | William Shanks | 527 | 得出707位小数,前527位正确 | |
1882年 | Lindemann | 证明π是超越数 | ||
1946年 | D. F. Ferguson | 620 | ||
1947年 | 710 | |||
1947年 | 808 | |||
1949年 | J. W. Wrench爵士及L. R. Smith | 2,037 | 首次使用计算机 | |
1955年 | 3,089 | |||
1957年 | G. E. Felton | 7,480 | ||
1958年 | Francois Genuys | 10,000 | ||
1958年 | G. E. Felton | 10,020 | ||
1959年 | Francois Genuys | 16,167 | ||
1961年 | IBM 7090 晶体管计算机 | 20,000 | ||
1961年 | J. W. Wrench,r,及L. R. Smith | 100,000 | ||
1966年 | 250,000 | |||
1967年 | 500,000 | |||
1974年 | 1,000,000 | |||
1981年 | 金田康正 | 2,000,000 | ||
1982年 | 4,000,000 | |||
1983年 | 8,000,000 | |||
1983年 | 16,000,000 | |||
1985年 | Bill Gosper | 17,000,000 | ||
1986年 | David H. Bailey | 29,000,000 | ||
1986年 | 金田康正 | 33,000,000 | ||
1986年 | 67,000,000 | |||
1987年 | 134,000,000 | |||
1988年 | 201,000,000 | |||
1989年 | 楚诺维斯基兄弟 | 480,000,000 | ||
1989年 | 535,000,000 | |||
1989年 | 金田康正 | 536,000,000 | ||
1989年 | 楚诺维斯基兄弟 | 1,011,000,000 | ||
1989年 | 金田康正 | 1,073,000,000 | ||
1992年 | 2,180,000,000 | |||
1994年 | 楚诺维斯基兄弟 | 4,044,000,000 | ||
1995年 | 金田康正和高桥大介 | 4,294,960,000 | ||
1995年 | 6,000,000,000 | |||
1996年 | 楚诺维斯基兄弟 | 8,000,000,000 | ||
1997年 | 金田康正和高桥大介 | 51,500,000,000 | ||
1999年 | 68,700,000,000 | |||
1999年 | 206,000,000,000 | |||
2002年 | 金田康正的队伍 | 1,241,100,000,000 | ||
2009年 | 高桥大介 | 2,576,980,370,000 | ||
2010年 | 近藤茂 | 5,000,000,000,000 | ||
2011年 | IBM“蓝色基因”超级电脑 | π↑2的前60,000,000,000,000位二进制小数 |
注:上表正确位数是指小数点后的位数。
• 算准记录
1 | 巴比伦人 | 前20世纪 |
2~3 | 阿基米德 | 前3世纪(距离上次1700年) |
4~5 | 刘徽 | 263年(距离上次563年以上) |
6~7 | 祖冲之 | 480年(距离上次217年) |
8~10 | Madhava | 1400年(距离上次920年) |
11~16 | Jamshid Masud Al Kashi | 1424年(距离上次24年) |
17~20 | 鲁道夫·范·科伊伦 | 1596年(距离上次172年) |
21~32 | 1615年(距离上次19年) | |
33~35 | 威理博·司乃耳, 范·科伊伦的学生 | 1621年(距离上次6年) |
36~71 | Abraham Sharp | 1699年(距离上次78年) |
72~100 | John Machin | 1706年(距离上次7年) |
101~112 | De Lagny | 1719年(距离上次13年) |
113~136 | Jurij Vega | 1794年(距离上次75年) |
137~152 | Rutherford | 1841年(距离上次47年) |
153~200 | Zacharias Dase及Strassnitzky | 1844年(距离上次3年) |
201~248 | Thomas Clausen | 1847年(距离上次3年) |
249~261 | Lehmann | 1853年(距离上次6年) |
262~440 | William Rutherford | 1853年(距离上次0年) |
441~500 | Richter | 1855年(距离上次2年) |
501~527 | William Shanks | 1874年(距离上次19年) |
528~620 | D. F. Ferguson | 1946年(距离上次72年) |
621~710 | 1947年(距离上次1年) | |
711~808 | 1947年(距离上次0年) |
注:这里只列出人工计算的最高记录, 808 位
II 、记号
π 是第十六个希腊字母的小写。这个符号,亦是希腊语“ περιφρεια ”(表示周边、地域、圆周等意思)的首字母。 1706 年英国数学家威廉·琼斯( William Jones ,1675 ~ 1749)最先使用“ π ”来表示圆周率。 1736 年,瑞士大数学家欧拉也开始用 π 表示圆周率。从此, π 便成了圆周率的代名词。
要注意不可把 π 和其大写 Π 混用,后者是指连乘的意思。
III 、公式
圆周率( π )一般定义为一个圆形的周长( C )与直径( d )之比 ,即 π = C / d = C / 2r ,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形, C / d 的值都是一样的,这样就定义出常数 π 。
第二个做法是,以圆形半径 r 为边长作一正方形,然后把圆形面积和此正方形面积的比值定为 π ,即圆形之面积与半径平方之比。
IV 、特性
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以 39 位精度的圆周率值,来计算可观测宇宙( Observable universe )的大小,误差还不到一个原子的体积。以前的人计算圆周率,是要探究圆周率是否循环小数。自从 1761 年兰伯特证明了圆周率是无理数, 1882 年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π 在许多数学领域都有非常重要的作用。
• 几何
• 代数
π 是个无理数,即不可表达成两个整数之比,是由德国科学家约翰·海因里希·兰伯特于 1761 年证明的。 1882 年,林德曼( Ferdinand von Lindemann )更证明了 π 是超越数,即 π 不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
• 数学分析
• 数论
两个任意自然数是互质的概率是 6 / π ↑ 2 。
任取一个任意整数,该整数没有重复质因子的概率为 6 / π ↑ 2 。
一个任意整数平均可用 π / 4 个方法写成两个完全数之和。
• 概率论
在平面上画有一组间距为 d 的平行线,求一根长度为 l ( l < d )的针任意投掷在这个平面上,求此针在平行线中与任一条相交的概率。这就是布丰投针问题。 1777 年,布丰自己本人证明了这个概率为 p = 2l / πd 。
• 物理学
V 、国际圆周率日
2011 年,国际数学协会正式宣布,将每年的 3 月 14 日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
国际圆周率日可以追溯至 1988 年 3 月 14 日,旧金山科学博物馆的物理学家 Larry Shaw ,他组织博物馆的员工和参与者围绕博物馆纪念碑做 3 又 1 / 7 圈( 22 / 7 , π 的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
2009 年,美国众议院正式通过一项无约束力决议,将每年的 3 月 14 日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关 π 的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式…… π 约等于 3 . 14 ,因此 3 月 14 日是纪念圆周率日最合适的日子。”
VI 、趣闻事件
历史上最马拉松式的人手 π 值计算,其一是德国的鲁道夫·范·科伊伦( Ludolph van Ceulen ),他几乎耗尽了一生的时间,于 1609 年得到了圆周率的 35 位精度值,以至于圆周率在德国被称为 Ludolphine number ;其二是英国的威廉·山克斯( William Shanks ),他耗费了 15 年的光阴,在 1874 年算出了圆周率的小数点后 707 位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第 528 位开始就算错了。
在 Google 公司 2005 年的一次公开募股中,共集资四十多亿美元, A 股发行数量是14,159,265股,这当然是由 π 小数点后的位数得来。(顺便一提, Google 公司 2004 年的首次公开募股,集资额为 $ 2,718,281,828,与数学常数 e 有关)
排版软件 TeX 从第三版之后的版本号为逐次增加一位小数,使之越来越接近 π 的值: 3 . 1 , 3 . 14 ,……当前的最新版本号是 3 . 1415926 。
每年 3 月 14 日为圆周率日。“终极圆周率日”则是 1592 年 3 月 14 日 6 时 54 分(因为其英式记法为“3 / 14 / 15926 . 54”)和 3141 年 5 月 9 日 2 时 6 分 5 秒(从前往后, 3 . 14159265 )。
7 月 22 日为圆周率近似日(英国式日期记作 22 / 7 ,看成圆周率的近似分数)。
有数学家认为应把“真正的圆周率”定义为 2π ,并将其记为 τ 。
2019 年 3 月 14 日, Google 宣布日裔前 Google 工程师爱玛(Emma HarukaIwao)在谷歌云平台的帮助下,计算到圆周率小数点后 31 . 4 万亿位,准确的说是 31415926535897 位,比 2016 年创下的纪录又增加数万亿位。据了解,爱玛的团队使用了一个名为ycruncher的程序,能将 π 计算到小数点后数万亿位。该程序由 Google 云平台计算引擎上运行的 25 个虚拟机驱动。而 2016 年纪录的创造者皮特( Peter Trueb )是用一台电脑计算出来的。这项计算需要 170 TB 的数据,与整个美国国会图书馆印刷藏品数据量大致相同,爱玛经过大约 4 个月的计算才打破了此前的世界纪录。
2020年,一个名为北阿拉巴马慈善计算的非营利组织的创始人蒂莫西·穆利肯使用个人电脑,将数值计算到小数点后 50 万亿位,耗时 303 天。
2021 年 8 月 17 日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时 108 天,将著名数学常数圆周率π计算到小数点后 62 . 8 万亿位,创下该常数迄今最精确值记录。
2022 年 6 月, Google Cloud 在新闻稿中表示, Google 的云服务已经打破了其在 2019 年创造的纪录,计算出了 100 万亿位圆周率数字,上一次,谷歌云把圆周率精确到了 31 . 4 万亿位。
隐藏内容需要登录才可以看见