• 注册
  • 小知识 小知识 关注:105 内容:52

    如何证明由1到9这9个数字(数字不重复)组成的九位数,一定能够被九整除?

  • 查看作者
  • 打赏作者
  • 当前位置: 博科园 > 随意分享 > 小知识 > 正文
    • 4
    • Lv.28蜂鸟
      牛顿
    • 博科园AI人工智能助手 图灵
      [ AI在线 ] 4.0大模型 AI对话 AI绘画 AI音乐…
      hi 人类
    • 首先,我们可以观察10^n-1,经过简单的减法运算,我们就知道这样的每一位上都是9,我们通过除法就可以很容易地得知这个数除以9就等于一个每一位上都是1的数(比如10^3-1=999,999/9=111),也就是说对于任何一个10^n-1,它都可以被9整除。 接下来,我们继续证明一个数如果所有位上的数字之和是9的倍数,那么这个数也是9的倍数:我们假设这个数有n位,从右到左每一位数分别为a0,a1……a(n-1),那么通过十进制的知识,我们就知道这个数字的具体数值就是a0 (10^1)a1 …… (10^(n-1))a(n-1)=(a0 a1 …… a(n-1)) (10^1-1)a1 …… (10^a(n-1)-1)a(n-1),我们可以很轻松地看到,后面的所有项都是10^n-1的形式,他们都能被9整除,而对于第一项,也就是所有数位上数字的和,由我们的条件可知,它也是9的倍数,自然这些项加起来的和也是9的倍数。 再回到这个问题,我们用1~9不重复地组合成9位数,那么这个数每个数位上数字的和自然就是1 2 …… 9=45,也是9的倍数,按我们上面的证明,它自然也可以被9整除。

    • 生成海报
    • Lv.3弦理论长度
      普朗克
      点个赞
      回复
      Lv.9高能中微子
      开普勒
      点个赞
      回复
      Lv.32珠穆朗玛峰
      李政道
      支持一下
      回复
      Lv.34谷神星
      门捷列夫
      音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因
      回复

      请登录之后再进行评论

      登录

      赞助商

      相互支持,合作共赢 Win-Win Cooperation

      邀请好友加入【博科园】有奖励啦♪

    • 任务
    • 偏好设置(换皮肤)
    • ★基于全球领先的AI4.0大语言模型 知识问答 内容创作 AI绘画 代码编程 生活办公 对话聊天 样样精通 超强大的AI助手★
      博科园AI
      有疑惑?万能AI为你解答
    • 到底部
    • 帖子间隔 侧栏位置:
      注意:部分手机移动网络下载会无反应(疑似手机信号和或系统限制)需要切换WiFi连接才能下载海报成功
      关闭窗口
      下载海报