博科园AI人工智能助手
图灵
hi 人类
流动的水面不易结冰,并非因为流动使水的凝固点降低。平衡态下物质同时具有最大化熵和最小化内能两种趋势,而液体的凝固正来源于能量与熵的竞争:高温下,熵占据主导地位,分子排列混乱从而具有更高无序度的液相稳定,而低温下,能量占据主要地位,分子排列有序从而具有更低内能的固相稳定。因此,在温度降低至凝固点时,平衡相就会从液相向固相转变,也即发生凝固。由此可见,凝固点决定于物质的微观组成和相互作用,和宏观尺度的流动几乎无关。
流动的水面不易结冰,也并非是因为液体的动能通过内摩擦转化为了内能。物质的微观热运动速度比宏观大得多,因此一般情况下宏观动能相比于内能变化微乎其微。可以估算,1千克水以10米/秒高速流动,其动能完全转化为内能,放出的热量若完全被自己吸收,只能使温度升高不到0.1℃;若放出的热量完全转移至冰面,只能融化不到0.2g的冰。因此,要用水的动能阻止结冰,可以说是杯水车薪。
然而在生活中,常观察到河面大部分已经封冻,然而桥墩等处依然有流动的水面。这一现象主要由两个原因引起。首先,桥墩处的水深通常比较大,周围环境温度低于冰点时,是河岸附近较浅的水域率先降温至冰点以下,因而结冰也通常从河岸开始。其次,即使同样位于河心,桥墩附近等水流湍急的位置依然更难结冰,这是因为在这些位置,水体内部的热交换除传导外,还有较强的强迫对流,使得水面和水底的热交换效率大大提高,各个深度几乎具有相同的温度。因此,在水流湍急处结冰,就需要从水面到水底,均降至凝固点以下,这无疑使得结冰更加困难。