• 注册
  • 天文理论 天文理论 关注:1469 内容:257

    研究表明:衬底缺陷是二维材料增长的关键!

  • 查看作者
  • 打赏作者
  • 当前位置: 博科园 > 天文学 > 天文理论 > 正文
    • Lv.27微波波长
      博科园VIP5
      靓号:201486
      赫歇尔
    • 博科园AI人工智能助手 图灵
      [ AI在线 ] 4.0大模型 AI对话 AI绘画 AI音乐…
      hi 人类
    • 研究表明:衬底缺陷是二维材料增长的关键!

      尽管付出了巨大的努力,创造足够大的二维材料用于电子领域仍然是一项挑战,但现在,宾夕法尼亚州立大学研究人员发现了一种提高一类二维材料质量的方法,未来有望实现晶片规模的增长。

      自从康斯坦丁·诺沃塞洛夫(Konstantin Novoselov)和安德烈·海姆(Andre Geim)用简单的胶带从大块石墨烯上剥离出一层碳原子后,具有不同寻常性能的二维材料。尽管对这些石墨烯的小碎片已经进行了大量科学研究,但工业规模的石墨烯层很难生长。

      研究表明:衬底缺陷是二维材料增长的关键!

      在为下一代电子产品设想的材料中,一组名为过渡金属双卤代烷的半导体处于前沿。TMDs只有几个原子厚,但在发方面非常有效,这使它们成为光电器件(如发光二极管、光电探测器或单光子发射器)的候选材料。宾州州立大学材料科学与电子学教授、美国国家科学基金会材料创新平台2d晶体联盟(Penn State's 2d crystal Consortium)主任琼·雷丁(Joan Redwing)说:

      我们的最终目标是用二烯化钨或二硫化钼薄片制作单层薄,然后用化学气相沉积法沉积它们,这样就能在整个晶圆上形成完美的单晶层,问题来自于原子在标准基底(如蓝宝石)上沉积时的组织方式。

      研究表明:衬底缺陷是二维材料增长的关键!

      • 图示氮化硼表面与钨原子锚定三角形区域,说明方向的缺陷控制。图片:Xiaotian Zhang/Penn State

      由于晶体结构的TMDs,形成三形,因为开始蔓延到整个衬底。三角形可以朝向相反的方向,概率相等。当它们碰撞并融合在一起形成一个连续的薄片时,它们形成的边界就像一个巨大缺陷,大大降低了晶体的电子和光学特性。当载流子,如电子或空穴,遇到这种被称为反转域边界的缺陷时,它们就会散射,这一直是TMD增长的一个经典问题。

      在发表在《ACS Nano》和《Physical Review B》上的研究中,宾夕法尼亚州立大学材料科学与工程、物理、化学和工程科学与力学部门的研究人员表明,如果TMDs生长在六边形氮化硼表面,85%或更多的TMDs将指向同一个方向。

      研究表明:衬底缺陷是二维材料增长的关键!

      物理、材料科学、工程和化学的杰出教授Vin Crespi和他的团队进行了模拟来解释为什么会发生这种情况。他们发现,六方氮化硼表面缺硼或缺氮原子的空位可以困住金属原子钨或钼,并使三角形定向到一个更合适的方向。与生长在蓝宝石上的二维TMDs相比,改进后的材料具有更高的光致发光发射能力和更高电子迁移率。Redwing说:我们的下一步是开发一种在晶圆片上生长六方氮化硼的工艺。这就是我们现在正在做的,控制缺陷和在大的表面上生长单晶层是很困难,许多组织都在研究这个问题。

      研究表明:衬底缺陷是二维材料增长的关键!

    • 生成海报
    • 请登录之后再进行评论

      登录

      赞助商

      相互支持,合作共赢 Win-Win Cooperation

      邀请好友加入【博科园】有奖励啦♪

    • 任务
    • 偏好设置(换皮肤)
    • ★基于全球领先的AI4.0大语言模型 知识问答 内容创作 AI绘画 代码编程 生活办公 对话聊天 样样精通 超强大的AI助手★
      博科园AI
      有疑惑?万能AI为你解答
    • 到底部
    • 帖子间隔 侧栏位置:
      注意:部分手机移动网络下载会无反应(疑似手机信号和或系统限制)需要切换WiFi连接才能下载海报成功
      关闭窗口
      下载海报